Efficiency Limits of Solar Energy Harvesting via Internal Photoemission in Carbon Materials
نویسندگان
چکیده
We describe strategies to estimate the upper limits of the efficiency of photon energy harvesting via hot electron extraction from gapless absorbers. Gapless materials such as noble metals can be used for harvesting the whole solar spectrum, including visible and near-infrared light. The energy of photo-generated non-equilibrium or ‘hot’ charge carriers can be harvested before they thermalize with the crystal lattice via the process of their internal photo-emission (IPE) through the rectifying Schottky junction with a semiconductor. However, the low efficiency and the high cost of noble metals necessitates the search for cheaper abundant alternative materials, and we show here that carbon can serve as a promising IPE material candidate. We compare the upper limits of performance of IPE photon energy-harvesting platforms, which incorporate either gold or carbon as the photoactive material where hot electrons are generated. Through a combination of density functional theory, joint electron density of states calculations, and Schottky diode efficiency modeling, we show that the material electron band structure imposes a strict upper limit on the achievable efficiency of the IPE devices. Our calculations reveal that graphite is a good material candidate for the IPE absorber for harvesting visible and near-infrared photons. Graphite electron density of states yields a sizeable population of hot electrons with energies high enough to be collected across the potential barrier. We also discuss the mechanisms that prevent the IPE device efficiency from reaching the upper limits imposed by their material electron band structures. The proposed approach is general and allows for efficient pre-screening of materials for their potential use in IPE energy converters and photodetectors within application-specific spectral windows.
منابع مشابه
Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates
متن کامل
Enhanced Efficiency in Dye-Sensitized Solar Cells by Electron Transport and Light Scattering on Freestanding TiO2 Nanotube Arrays
Dye-sensitized solar cells (DSSCs) were fabricated with closed- or open-ended freestanding TiO₂ nanotube arrays as photoelectrodes that were decorated with carbon materials and large TiO₂ nanoparticles (NPs) to enhance energy conversion efficiency. The energy conversion efficiency of DSSCs based on open-ended freestanding TiO₂ nanotube arrays increased from 4.47% to 5.39%, compared to the DSSCs...
متن کاملSlow hot-carrier relaxation in colloidal graphene quantum dots.
Reducing hot-carrier relaxation rates is of great significance in overcoming energy loss that fundamentally limits the efficiency of solar energy utilization. Semiconductor quantum dots are expected to have much slower carrier cooling because the spacing between their discrete electronic levels is much larger than phonon energy. However, the slower carrier cooling is difficult to observe due to...
متن کاملExciton antennas and concentrators from core-shell and corrugated carbon nanotube filaments of homogeneous composition.
There has been renewed interest in solar concentrators and optical antennas for improvements in photovoltaic energy harvesting and new optoelectronic devices. In this work, we dielectrophoretically assemble single-walled carbon nanotubes (SWNTs) of homogeneous composition into aligned filaments that can exchange excitation energy, concentrating it to the centre of core-shell structures with rad...
متن کاملPlasmon-Enhanced Light Harvesting of Chlorophylls on Near-Percolating Silver Films via One-Photon Anti-Stokes Upconversion
There exists a wealth of means of efficient utilization of solar energy in nature, with photosynthesis of chlorophylls as a prime example. Separately, artificially structured plasmonic materials are versatile in light harvesting and energy conversion. Using a simple and scalable design of near-percolating silver nanostructures, we demonstrate that the light-harvesting efficiency of chlorophylls...
متن کامل